Innovation and Imitation

With and Without IPRs

Rufus Pollock

Emmanuel College
University of Cambridge

FLOSS 2.0, June 2008
Motivation and Background
Growing Amount of ‘Open’ Knowledge Production

- Open source software (Firefox), content (Wikipedia), etc
- Though how much ex-ante ‘commercial’ and profit-motivated still debated
Impact of IP on Innovation/Creativity

- Controversy over impact of IP on innovation/creativity
 - Software/business process patents, Biotech, Music
 - (Hip-hop)
Commonality

• Weak/No IP may be better for *innovation*
 • NB: NOT about impact of IP on welfare

• Open models may do better than closed ones

• Does not fit well with traditional theory ...
Traditional Theory

- Level of Innovation = \(I(\text{Appr. Value, Cost}) = I(V, C) \)
- Trad. view: \(V^{IP} > V^{NIP} > V^{O} \approx 0 \) and \(C^{IP} = C^{NIP} = C^{O} \)
- \(\Rightarrow \) more innovation with IPRs
- In fact, more than that
- If imitation cheaper than innovation (and ‘fast’) then simple competition
- \(\Rightarrow V^{NIP} = C^{IMM} < C \Rightarrow \) No innovation w/o IPRs
But in Reality

Or Even
But in Reality

Or Even

Innovation Space

Without IP (or Open)

With IP
So What Gives?

- Two directions to go (theoretically and empirically)
- Focus on C
 - Maybe costs are lower w/o IP or when open
 - Will not look at this here – dealt with elsewhere
- Focus on V
 - Nonrivalry is clearly a simplification
 - Firms can appropriate returns w/o IPR (+ imitation costly)
 - So examine imitation and appropriation more carefully
What Does This Paper Do

- Incorporate imitation formally
 - Both costly in itself
 - And allows innovator some kind of first-mover role
- Occurrence and degree of innovation with imitation
- Natural conception of a general innovation ‘space’
- Allows us to look at relation of:
 - Policy regimes (IP vs. no IP vs. Open) and welfare
 - Some general results and conjectures
Model
Setup

- Innovation and imitation costs: f_I, f_m
- Imitation cost as proportion of inno cost: $\phi = f_m/f_I$
 - Assume imitation cost is always less than innovation cost
- As specified innovation is defined by tuple (f_I, ϕ)
- Some model (M) of competition determines (for each f_I, ϕ)
 inno income V
 - If $V > f_i$ then the innovation occurs, otherwise not.
 - In paper look at one natural case (Stackelberg)
- Plenty of others: seq. entry, hotelling with choice etc etc
The Space of Innovations

- Under the assumptions given and using normalized variables the space of innovations is then the unit square:

\[IS = \{(f_I, f_m) \in [0, 1] \times [0, 1] : f_m \leq f_I\} \]

\[= \{(f_I, \phi) \in [0, 1] \times [0, 1]\} \]
Each (potential) innovation located somewhere in this space

If uncertainty (for policy-maker) then location a distribution g

Similarly industry/ies naturally represented by distbn g

To left: conjectured industry locations (without IPRs)
The effect of intellectual property rights

- Introduction of IPRs (patent or copyright) has natural representation:
 1. (Default) All imitation is prohibited \Rightarrow all innovations occur.
 2. Original g^{NIP} is transformed to a new distribution g^{IP}
Results
Results

- Basic question: given model M what innovations occur
 - With and without IP (and in Open case)
- Next question: how does this relate to welfare
Figure: Innovation without IP in Stackelberg case. (yellow: non-integer no. of imitators ok, red: integer only)

- ‘Feasible’ imitation costs fall faster than inno costs
- Stackelberg: ‘Squared rule’: $f_m \geq f_i^2$
- Given distbn g can get inno w/o IP and compare to with IP
- How does this generalize for arbitrary competition models M?
Figure: Innovation without IP in Stackelberg case. (yellow: non-integer no. of imitators ok, red: integer only)

- ‘Feasible’ imitation costs fall faster than inno costs
 - Stackelberg: ‘Squared rule’: $f_m \geq f_i^2$
- Given distbn g can get inno w/o IP and compare to with IP
- How does this generalize for arbitrary competition models M?
Welfare

- For inno. f_i, ϕ can calculate welfare (assuming it occurs)
- Compare welfare with IP W^{IP} to welfare without IP W^{NIP}
- Result (any M): welfare ratios higher than inno ratios
 - (trad) given inno generates higher welfare w/o IP (less d/w)
 - (novel) innos that occur w/o IP have higher welfare on average than those that occur only with IP because costs are lower
- In stackelberg case/uniform distbn: welfare ratio = 75% vs. 50% for inno ratio
Conclusion

- General framework in which to look at innovation and imitation
 - One major aspect of why/when IP rights
 - Imitation ratio *falls* with inno cost
 - Understand changes in IPRs over time (Bonito boats/Perfumes etc)
- Innovation when imitation cheaper
- Welfare ‘better’ than inno when comparing no IP (or Open) to IP