Comments on Efficient Division of Profits for Complex Innovations
(Richard Gilbert and Michael Katz)

Rufus Pollock

Department of Economics
University of Cambridge

IIOC 2007-04-14
Basic Question

How Should We Divide Up the Pie When Dealing with Complex/Componentized Innovations?
Can We Do This in an ‘Implementable Manner’?

That is using the observables available to a court ...

- Number of patents each party has
- Sales (and perhaps profits)
Take a Step Back: Patent Races Generally

2 Basic (Opposing) Effects:

1. **Wedge Between Private Value** (Π) and **Social Value** (W): $(\Pi < W)$
 - Level of innovation will be too low compared to optimal

2. ’Pooling’ externality of patent races
 - Too much innovation compared to social optimum

\Rightarrow Level of innovation can be too high, too low (or just right)
Suppose we can Manipulate Payoffs

- $\pi_0 =$ Payoff from losing (0 patents)
- $\pi_1 =$ Payoff from winning (1 patent)
- Budget balance: $\pi_0 + \pi_1 = \Pi$ (Private value)
- Difference: $\Delta = \pi_1 - \pi_0$
- Total R&D effort N is an increasing function of Δ
• If Δ unrestricted can achieve any effort level including the socially efficient effort level

• BUT: very unlikely $\Delta = \Pi$

• $\Delta > \Pi$: impossible to have budget balance (Government must put money in the pot)

• $\Delta < \Pi \Rightarrow$ must violate one of:
 • Budget balance
 • Zero reward for zero success $\pi_0 = 0$

• General result (Holmstrom 1982)
The Paper
Main Results

- Generalize to case of componentised innovation
 - Need exactly \(L \) distinct innovations for product to be useful
- Explicit formula for shares: \(s(k, L - k) = \frac{1}{2} + (k - \frac{L}{2}) \frac{\theta}{\alpha} \)
 - Assumptions: Duopoly, Linear hazard rates, \(\alpha \geq \theta L \)
 - \(\alpha > \theta L \Rightarrow s(0, L) > 0 \): i.e. positive reward for zero patents
- Compare this with 2 implementable schemes
 - Shares equal to share of patents: \(s(k, L - k) = k/L \)
 - Equal shares per patent-holder: \(s(k, L - k) = 1/2 \)
The Paper (2): Implementable Schemes

• Unsurprisingly neither regime will deliver optimality in general
• Shares equal to share of patents: $s(k, L - k) = k/L$
 • $\Rightarrow s(0, L) = 0$
 • So if $\alpha > \theta L$ cannot be optimal
 • Too much R&D ...
• Equal shares per patent-holder: $s(k, L - k) = 1/2$
 • Too little incentive once both firms have patents
 • Too large incentives when one firm without any patents
 • In general one might imagine that first effect would prevail but algebra will be hairy
Issues and Extensions
\[\alpha \geq \theta L \]

- A non-trivial requirement \((\alpha^2 = w/rc, \theta = 2w/\pi - 1)\)
- \(\alpha < \theta L:\)
 - Corresponds to \(\Delta > \Pi\): insufficient incentives under budget balance
 - Occurs when \(\frac{1}{\sqrt{rc}} < \left(\frac{2w-\pi}{\pi w^{1/2}}\right)L\)
 - \(r, c\) large, \(\pi\) small compared to \(w\) or \(L\) large.

- In this situation we want more R&D
- When \(\alpha > \theta L\) proportional shares result in too much R&D
- Suggests proportional shares will do ‘well’ here ...
Non-zero Reward for Zero Success: What’s the Problem?

- Adverse selection/Free-riding?
- Get the idea: anyone could just turn up and ask for $s(0, L)$
 - Concrete example: ACM paper on 3G
- **But** have a Nash Equilibrium: so firms *will* invest
 - What exactly is the entry game?
 - What form does cost heterogeneity take (w/o back to Nash)
Further Suggestions

• Equal shares per patent holder seems to do poorly
 • Does this suggest a role for compulsory licensing
• Devil is in the details: not all patents are the same ...
 • Back to 3G example: how do we model free-riding
• More than 2 firms (n firms)